При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида (1,4 ± 0,2) Н записывайте следующим образом: 1,40,2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. Если в наборе дифракционных решёток имеются решётки с числом штрихов 500; 750; 1000; 1250; 2000 на длине l=1 см, то наименьший период d имеет решётка с числом штрихов:

1) 500

2) 750

3) 1000

4) 1250

5) 2000

2. Мальчик крикнул, и эхо, отражённое от преграды, возвратилось к нему обратно через промежуток времени $\Delta t = 1,00$ с. Если модуль скорости звука в воздухе $\upsilon = 0.330$ км/с, то расстояние L от мальчика до преграды равно:

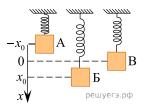
1) 165 m 2) 185 m 3) 220 m

4) 285 m

3. Почтовый голубь дважды пролетел путь из пункта А в пункт В, двигаясь с одной и той же скоростью относительно воздуха. В первом случае, в безветренную погоду, голубь преодолел путь AB за промежуток времени $\Delta t_1 = 36$ мин. Во втором случае, при встречном ветре, скорость которого была постоянной, голубь пролетел этот путь за промежуток времени $\Delta t_2 = 54$ мин.

Если бы ветер был попутным, то путь AB голубь пролетел бы за промежуток времени Δt_3 , равный:

2) 21 мин 3) 24 мин 4) 27 мин

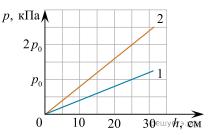

4. На поверхности Земли на тело действует сила тяготения, модуль которой $F_1 = 144$ Н. На это тело, когда оно находится на высоте $h = 2R_3$ (R_3 — радиус Земли) от поверхности Земли, действует сила тяготения, модуль которой F_2 равен:

1) 16 H

2) 24 H 3) 36 H

4) 48 H

5. На рисунке изображены три положения груза пружинного маятника, совершающего свободные незатухающие колебания с амплитудой x_0 . Если в положении B полная механическая энергия маятника W = 8,0 Дж, то в положении E она равна:



1) 0 Дж 2) 2,0 Дж 3) 4,0 Дж

4) 6,0 Дж

5) 8,0 Дж

6. На рисунке представлены графики (1 и 2) зависимости гидростатического давления p от глубины h для двух различных жидкостей. Если плотность первой жидкости ρ_1 = 0.80 г/см^3 , то плотность второй жидкости ρ_2 равна:

1) 0.80 r/cm^3 2) 0.90 r/cm^3 3) 1.4 r/cm^3 4) 1.6 r/cm^3 5) 1.8 r/cm^3

7. В герметично закрытом сосуде находится идеальный газ, давление которого $p = 0.48 \cdot 10^5$ Па. Если средняя квадратичная скорость поступательного движения молекул газа $< v_{\kappa g} > = 400$ м/с,то плотность ρ газа равна:

1) 0,10 кг/м 3 2) 0,30 кг/м 3 3) 0,36 кг/м 3 4) 0,90 кг/м 3

5) $1,1 \text{ kg/m}^3$

8. Если давление p_0 насыщенного водяного пара при некоторой температуре больше парциального давления p водяного пара в воздухе при этой же температуре в n=1,2 раза, то относительная влажность $\,\phi\,$ воздуха равна:

1) 35 %

2) 46 %

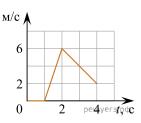
3) 59 %

4) 66 %

5) 83 %

9. В некотором процессе над термодинамической системой внешние силы совершили работу $A = 25 \, \, \mathrm{Дж}$, при этом внутренняя энергия системы увеличилась на ΔU = 55 Дж. Количество теплоты Q, полученное системой, равно:

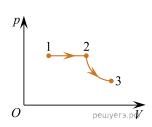
1)0


2) 25 Дж

3) 30 Дж 4) 55 Дж

5) 80 Дж

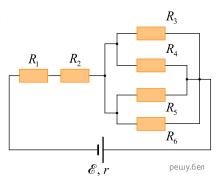
10. Среди перечисленных ниже физических величин векторная величина указана в строке, номер которой:


- 1) электрическое напряжение; 2) индуктивность; 3) электроёмкость; 4) напряжённость электростатического поля; 5) сила тока.
- 11. Материальная точка массой m=3 кг движется вдоль оси Ox. График зависимости проекции скорости v_x материальной точки на эту ось от времени t представлен на рисунке. В момент v_x , м/с времени v_x времени v_x приложенных к материальной точке, равен ... v_x н.

12. Игрок в кёрлинг сообщил плоскому камню начальную скорость $\vec{\upsilon}_0$, после чего камень скользил по горизонтальной поверхности льда без вращения, пока не остановился. Коэффициент трения между камнем и льдом $\mu=0.0098$. Если путь, пройденный камнем, s=32 м, то модуль начальной скорости υ_0 камня равен ... $\frac{\rm дM}{\rm c}$.

- 13. При выполнении циркового трюка мотоциклист движется по вертикальной цилиндрической стенке радиуса R=10 м. Если коэффициент трения $\mu=0,50$, то модуль минимальной скорости υ_{\min} движения мотоциклиста равен ... $\mathbf{m/c}$. Ответ округлите до целых.
- **14.** На невесомой нерастяжимой нити длиной l=98 см висит небольшой шар массой M=38,6 г. Пуля массой m=1,4 г, летящая горизонтально со скоростью \vec{v}_0 , попадает в шар и застревает в нем. Если скорость пули была направлена вдоль диаметра шара, то шар совершит полный оборот по окружности в вертикальной плоскости при минимальном значении скорости v_0 пули, равном ...м/с.
- **15.** При нагревании одноатомного идеального газа средняя квадратичная скорость теплового движения его молекул увеличилась в n = 1,20 раза. Если начальная температура газа была $t_1 = -14$ °C, то конечная температура t_2 газа равна ... °C. Ответ округлите до целого числа.
- **16.** Небольшой пузырёк воздуха медленно поднимается вверх со дна водоёма. На глубине $h_1=80$ м температура воды ($\rho=1,0\frac{\Gamma}{\text{CM}^3}$) $t_1=7,0^{\circ}\text{C}$, на пузырек действует выталкивающая сила, модуль которой $F_1=5,9$ мН. На глубине $h_2=1,0$ м, где температура воды $t_2=17^{\circ}\text{C}$, на пузырек действует выталкивающая сила \vec{F}_2 . Если атмосферное давление $p_0=1,0\cdot 10^5$ Па, то модуль выталкивающей силы F_2 равен ... мН.
- 17. Два моля идеального одноатомного газа перевели из состояния 1 в состояние 3 (см. рис.), сообщив ему количество теплоты Q=5,30 кДж. Если при изобарном расширении на участке $1\to 2$ температура газа изменилась на $\Delta T=120$ K, то на участке $2\to 3$ при изотермическом расширении газ совершил работу A, равную ... Дж.

- **18.** Если в результате радиоактивного распада число N_0 ядер изотопа некоторого вещества уменьшилось в k=16 раз за промежуток времени $\Delta t=32$ сут, то период полураспада $T_{1/2}$ этого вещества равен ... **су**т.
- **19.** Зависимость силы тока I в нихромовом $\left(c=460\frac{\Box \text{ж}}{\text{кг}\cdot\text{K}}\right)$ проводнике, масса которого m=30 г и сопротивление R=1,3 Ом, от времени t имеет вид $I=B\sqrt{Dt}$, где B=0,12 А, D=2,2 с $^{-1}$. Если потери энергии в окружающую среду отсутствуют, то через промежуток времени $\Delta t=90$ с после замыкания цепи изменение абсолютной температуры ΔT проводника равно ... К.
- **20.** Троллейбус массой m=12 т движется по горизонтальному участку дороги прямолинейно и равномерно. Коэффициент полезного действия двигателя троллейбуса $\eta=82$ %. Напряжение на двигателе троллейбуса U=550 В, а сила тока в двигателе I=35 А. Если отношение модулей силы сопротивления движению и силы тяжести, действующих на троллейбус, $\frac{F_c}{mg}=0,011,$ то модуль скорости троллейбуса равен.... $\frac{\mathrm{KM}}{\mathrm{Y}}$.
- **21.** На дне сосуда, заполненного до высоты h = 15,0 см жидкостью с абсолютным показателем преломления n = 1,33, находится точечный источник света. Площадь S круга, в пределах которого возможен выход лучей от источника через поверхность жидкости, равна ... \mathbf{cm}^2 . Ответ округлите до целых.

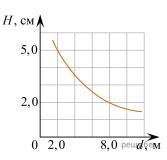

- **22.** Маленькая заряжённая бусинка массой m=1,5 г может свободно скользить по оси, проходящей через центр тонкого незакреплённого кольца перпендикулярно его плоскости. По кольцу, масса которого M=4,5 г и радиус R=40 см, равномерно распределён заряд Q=3,0 мкКл. В начальный момент времени кольцо покоилось, а бусинке, находящейся на большом расстоянии от кольца, сообщили скорость, модуль которой $\upsilon_0=2,4$ $\frac{\rm M}{\rm C}$. Максимальный заряд бусинки $q_{\rm max}$, при котором она сможет пролететь сквозь кольцо, равен ... **нКл**.
- **23.** На дифракционную решётку нормально падает белый свет. Если для излучения с длиной волны $\lambda_1=480$ нм дифракционный максимум третьего порядка ($m_1=3$) наблюдается под углом θ , то максимум четвертого порядка ($m_2=4$) под таким же углом θ будет наблюдаться для излучения с длиной волны λ_2 , равной? Ответ приведите нанометрах.
- **24.** Для исследования лимфотока пациенту ввели препарат, содержащий $N_0=120\,000$ ядер радиоактивного изотопа золота $^{133}_{54}$ Xe. Если период полураспада этого изотопа $T_{\frac{1}{2}}=5,5\,$ сут., то $\Delta N=90000\,$ ядер $^{133}_{54}$ Xe распадётся за промежуток времени Δt , равный ... сут.
- **25.** Сила тока в резисторе сопротивлением R=16 Ом зависит от времени t по закону I(t)=B+Ct, где B=6,0 А, C=-0,50 $\frac{\mathrm{A}}{\mathrm{c}}$. В момент времени $t_1=10$ с тепловая мощность P, выделяемая в резисторе, равна ... Вт.
- **26.** Резистор сопротивлением R=10 Ом подключён к источнику тока с ЭДС $\mathcal E=13$ В и внутренним сопротивлением r=3,0 Ом. Работа электрического тока A на внешнем участке электрической цепи, совершённая за промежуток времени $\Delta t=9,0$ с, равна ... Дж.

27.

На рисунке изображена схема электрической цепи, состоящей из источника тока и шести одинаковых резисторов

$$R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = 10.0 \,\text{Om}.$$

В резисторе R_6 выделяется тепловая мощность $P_6 = 90,0$ Вт. Если внутреннее сопротивление источника тока r = 4,00 Ом, то ЭДС $\mathcal E$ источника тока равна ... В.



- **28.** Электрон, модуль скорости которого $\upsilon=1,0\cdot 10^6~\frac{\rm M}{\rm c}$, движется по окружности в однородном магнитном поле. Если на электрон действует сила Лоренца, модуль которой $F_{\rm Л}=6,4\cdot 10^{-15}~{\rm H}$, то модуль индукции B магнитного поля равен ... мТл.
- **29.** В идеальном колебательном контуре, состоящем из конденсатора и катушки, индуктивность которой L=0.20 мГн, происходят свободные электромагнитные колебания. Если циклическая частота электромагнитных колебаний $\omega=1.0\cdot 10^4 \, \frac{\mathrm{pag}}{\mathrm{c}}$, то ёмкость C конденсатора равна ... мк Φ .

30.

График зависимости высоты H изображения карандаша, полученного с помощью тонкой рассеивающей линзы, от расстояния d между линзой и карандашом показан на рисунке. Модуль фокусного расстояния |F| рассеивающей линзы равен ... дм.

Примечание. Карандаш расположен перпендикулярно главной оптической оси линзы.

